Chapter 17, Exercise B — Add the missing justifications to the following proofs:
1. P ∧ S, S → R ∴ R ∨ E
2. A → D ∴ (A ∧ B) → (D ∨ E)
3. ¬L → (J ∨ L), ¬L ∴ J
Chapter 17, Exercise C — Give a proof for each of the following arguments:
1. J → ¬J ∴ ¬J
2. Q → (Q ∧ ¬Q) ∴ ¬Q
3. A → (B → C) ∴ (A ∧ B) → C
4. K ∧ L ∴ K ↔ L
5. (C ∧ D) ∨ E ∴ E ∨ D
6. A ↔ B, B ↔ C ∴ A ↔ C
7. ¬F → G, F → H ∴ G ∨ H
8. (Z ∧ K) ∨ (K ∧ M), K → D ∴ D
9. P ∧ (Q ∨ R), P → ¬R ∴ Q ∨ E
10. S ↔ T ∴ S ↔ (T ∨ S)
11. ¬(P → Q) ∴ ¬Q
12. ¬(P → Q) ∴ P
Chapter 18, Exercise A — Give a proof for each of the following arguments:
1. A → B, A → C ∴ A → (B ∧ C)
2. (A ∧ B) → C ∴ A → (B → C)
3. A → (B → C) ∴ (A → B) → (A → C)
4. A ∨ (B ∧ C) ∴ (A ∨ B) ∧ (A ∨ C)
5. (A ∧ B) ∨ (A ∧ C) ∴ A ∧ (B ∨ C)
6. A ∨ B, A → C, B → D ∴ C ∨ D
7. ¬A ∨ ¬B ∴ ¬(A ∧ B)
8. A ∧ ¬B ∴ ¬(A → B)
Chapter 18, Exercise C — Practice proving sentences from no premises:
1. ¬A → (A → ⊥)
2. ¬(A ∧ ¬A)
3. ((A → C) ∧ (B → C)) → ((A ∨ B) → C)
4. ¬(A → B) → (A ∧ ¬B)
5. (¬A ∨ B) → (A → B)
Chapter 18, Exercise D — Practice proving arguments requiring IP:
1. ∴ ¬¬A → A
2. ¬A → ¬B ∴ B → A
3. A → B ∴ ¬A ∨ B
4. ∴ ¬(A ∧ B) → (¬A ∨ ¬B)
5. A → (B ∨ C) ∴ (A → B) ∨ (A → C)
6. ∴ (A → B) ∨ (B → A)
7. ∴ ((A → B) → A) → A
Chapter 19, Exercise A — Add the missing justifications to the following proofs:
1. W → ¬B, A ∧ W, B ∨ (J ∧ K) ∴ K
2. L ↔ ¬O, L ∨ ¬O ∴ L
3. Z → (C ∧ ¬N), ¬Z → (N ∧ ¬C) ∴ N ∨ C
Chapter 19, Exercise B — Give a proof for each of the following arguments:
1. E ∨ F, F ∨ G, ¬F ∴ E ∧ G
2. M ∨ (N → M) ∴ ¬M → ¬N
3. (M ∨ N) ∧ (O ∨ P), N → P, ¬P ∴ M ∧ O
4. (X ∧ Y) ∨ (X ∧ Z), ¬(X ∧ D), D ∨ M ∴ M
Chapter 20, Exercise A — Show that each of the following sentences is a theorem:
1. O → O
2. N ∨ ¬N
3. J ↔ (J ∨ (L ∧ ¬L))
4. ((A → B) → A) → A
Chapter 20, Exercise B — Give a proof for each of the following arguments:
1. C → (E ∧ G), ¬C → G ∴ G
2. M ∧ (¬N → ¬M) ∴ (N ∧ M) ∨ ¬M
3. (Z ∧ K) ↔ (Y ∧ M), D ∧ (D → M) ∴ Y → Z
4. (W ∨ X) ∨ (Y ∨ Z), X → Y, ¬Z ∴ W ∨ Y